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TECHNICAL REPORT R-15

APPROXIMATE ANALYTICAL SOLUTIONS FOR HYPERSONIC FLOW OVER
SLENDER POWER LAW BODIES

By Harornp MIRELS

SUMMARY

Approrimate analytical solutions are presented
Jor two-dimensional (6==0) and arisymmetric (c=1)
hypersonic flow over blunt-nosed slender bodies whose
shapes follow a power law variation. In particular,
the body shape is given by To~X™ where Ty, is the
transverse body ordinate, X is the streamwise distance
from the nose, and m 18 a constant in the range
2/(c+3)<m<1. Both zero-order (M->w) solu-
tions and first-order (small but nonvanishing ralues
of 1/(M6)?) solutions are presented, where M is the
free-stream Mach number and & is a characteristic
body or streamline slope.  The zero-order shock shape
Ry is similar to the body shape for these flows.  The
solutions are found within the framework of
hypersonic-slender-body theory.

The limiting case m=1 corresponds to a wedge
(6=0) or cone (6=1) flow. The Limiting case
m:Q/(_aj— 3) corresponds to a constant-cnergy flew
T,=0, Ry~X¥t)  The latter cases are included
so that the present study may be applied to all flows
wherein the zero-order shock shape is given by Ry~
X2 with m wn the range 2{(c+3)<m<1. Flow
fields associaled with shock shapes having ralues of m
outside this range are also discussed.  For all values
of m, except m=1, certain portions of the flow field
violale the hypersonic-slender-body approzrimations,
while other portions are consistent with these approx-
amations.  For m=1, all portions of the flow field
are consistent with the approximations.

The approximate solutions are found as follows.
The asymptotic form of the flow in the vicinity of the
body surface is used as a guide to write approximate
expressions for the dependent cariables. These
crpressions eractly satisfy the confinuity and
enerqy equations and eonlain arbitrary constants
which are evaluated so as to satisfy boundary condi-
tions at the shock. The approrimate solutions do

not satisfy the lateral momentum cquation excepl at
the shock and (for the first-order problem) at the body
surface.

The results of the approrimate solutions are
compared with numerical integrations of the equa-
tions of motion for various values of m and v (ratio
of speeific heats).  Good agreement is noted, par-
ticwlarly when m and v are both near one. The
shock is relatively close to the body for the latter
cases.  Sufficient results are presented lo evaluate
the accuracy of the approrimate method for various
ralues of m and v.

INTRODUCTION

The steady-state equations of motion for hyper-
sonic flow over slender bodies can be reduced to
simpler form by incorporating the “hypersonie-
slender-body approximations” (e.g., refs. 1 and 2).
The reduced equations are valid provided 8#< <1
and 1/376 £0(1), where M is the free-stream Mach
number and 8 is a characteristic body or stream-
line slope.  Reference 1 has shown that, if the
nondimensional streamwise coordinate is con-
sidered as a nondimensional time, these reduced
cquations are identical with the full (exact) equa-
tions for a corresponding unsteady flow in one less
space varinble. Forcbody drag on a hypersonic
slender body is equivalent lo the net energy per-
turbation (from the undisturbed state) in the
corresponding unsteady flow.

References 3 and 4 have treated the constant-
energy flow field behind the spherical “blast”
wave which is generated when a finite amount of
energy is released instantancously at a point. The
analysis assumes a very strong wave and is valid
(for a perfeet gas) until the decay of shock strength
is sufficient to violate the strong shock assump-
tions. The problem of planar and cylindrical
blast waves was treated by a unified analysis in
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reference 5. In addition, the flow-ficld modifica-
tions associated with more moderate shock
strengths were found by a perturbation analysis
(refs. 5 and 6). The solution for the cylindrieal
blast wave was obtained, independently, in refer-
cnee 7. Reference 8 has pointed out that, within
the framework of hypersonic-slender-body theory,
the hypersonic flow over a blunt-nosed flat plate
{or circular eylinder) may be considered as the
steady-state analog of the constant-energy planar
or cylindrical blast-wave problems, respectively.
The nose drag in the steady problem ig equivalent
to the finite cnergy which is instantancously
released in the blast-wave problem. The steady
flow 1s not correet near the nose (where the
hypersonic-slender-body approximation §<<(1 is
violated) and far downstream of the nose (where
the approximation 1/Ms<0(1) is violated as is
the strong wave assumptions of Dlast-wave
theory). However, useful results are obtained
for the intermediate regions (ref. 8).

The Dblast-wave problems all  exhibit  flow
similarity. That is, the flow fields at different
times are similar, except for a scale factor on
both the dependent and independent variables.
References 9 and 10 have observed that such
similarity exists whenever the shock shape follows
a power law variation (with streamwise distance)
provided the hypersonic-slender-body equations
are considered in the limit as 1/(36)%->0. This
Ied to numerical solutions of the hypersonie flow
over slender blunt-nosed bodies. The effect of
nonvanishing values of 1/(3£5)? was also found in
reference 10 by a numerical perturbation analysis.

In the present report, approximate analytical
solutions are obtained for both the zero-order
(1/(M8)*—0) and first-order (small but nonvanish-
ing values of 1/(378)%) hypersonic flow over blunt-
nosed slender bodies.  The zero-order solutions
represent generalizations of the approximate ana-
Ivtical solutions of the blast-wave problem which
are presented in references 3, 4, and 5. The
shock locations and pressure distributions indi-
cated by the approximate solutions are compared
with the values which result from a numerical
integration of the equations of motion. Finally,
some general properties of the hypersonie flow
fields associated with power law shock waves are

discussed.
ANALYSIS

The equations for hypersonic flow over slender
bodies are summarized herein.  These are then

7
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Frorre 1—Phyxical quantities for study of hypersonie
flow over blunt-nosed bodies,  Ry—= Ry(Z) is shock shape
in the limit as 1/(A8)2—»0.

specialized to obtain the zero-order and first-
order equations for hypersonic flow over those
slender blunt-nosed bodies whose zero-order shock
shape follows a power law variation. TFinally,
approximate analytical solutions of these equa-
tions are obtained.

HYPERSONIC-SLENDER-BODY THEORY

The equations of motion for hypersonic flow
over slender bodies (e.g., ref. 2) are summarized
in the present section.

Physiecal dependent and independent variables
are barred herein (w2, 7, 7,7, ele.).  Symbols are de-
fined in appendix A. Figure 1 shows some of
these quantities. Tet & represent a characteristic
body or streamline slope and I represent a char-
acteristic streamwiselength.  Two-dimensional and
axisymmetric flows are considered, with (Z,7)
and (u,7) being the streamwise and {ransverse
coordinates and veloeities, respeetively. To obtain
the hypersonic-slender-body equations of motion,
the following nondimensional quantities ave intro-
duced (following ref. 2):

r=7 u=@—u,)U.8® p="7lyM*¥D,,

ey

r—=7/18 v=T[U.b p=p/p=

The body shape and shock shape are denoted by 7,=
() and R=R({), respectively, so that

ry=Ty/ 1.8 R=NR/Ls (2)
If these quantities are introduced into the equa-
tions of motion and terms of order 8 are neglected
{compared with one), the hypersonic-slender-
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body equations are obtained. These are (ref. 2):

Continuity:
% Opr, o
o crrf() (3a)
r—Momentum:
bz' a[) g bp (3b)
Energy:
o(p/e”) ,  0plp") X
or o =0 (3¢)

The boundary conditions are:
At body surface:

v,,:%’ (4a)
Upstream of shock:
Uy =10= (4b)
Po=1;y1178* (4¢)
=1 4d)

Downstream stde of shock:

S )
7”‘1?2%1 ‘(15 { [97 ; jﬂm)“]} @)
A CRDN |

Here ¢=0,1 for two-dimensional and axisymmetric
flows, respeetively., This system of equations
can be solved independent of the z-momentum
cquation, and therefore the latter is neglected
herein,  The system of equations is consistent
provided 1/378<0(1). (Note that the right sides
of eqs. (4¢), (4e), and (4f) become ifinite if 36
is permitted to go to zero as 8 goes {o zero.)
Thus, the conditions 1/35<0(1) and &<<1
must be satisfied for the hypersonic-slender-body
cquations to be valid.

FLOW FIELDS HAVING ZERO-ORDER SHOCK SHAPES
FOLLOWING POWER LAW VARIATION

The equations for hypersonic flow over slender
bodies are specialized herein.  The  resulting
equations give the zero-order and first-order
hypersonic flow over those blunt-nosed bodies
whose zero-order shock shape follows a power law
variation. These equations were previously de-
rived in reference 10,

Let Ry(F) denote the shock shape for a given
body in the limit as 1/{(M8)*—0 (i.c., zero-order
solution). References 9 and 10 have shown that
when y(T) ~7™ the flow fields are similar at cach

streamwise station (for 1/(318)2—0). In general,
the body shape is similar to the shock shape for
such flows, in which case 7,(F) ~7™.  Values of m
in the range 2/(0+3)<m<1 correspond to bodies
having an infinite positive slope at the nose.
The limiting value m=1 corresponds {o flow over
a wedge (6=0) or cone (¢=1), while m=2/(¢+3)
results in a body shape 7,(F)=0. The latter flow
may be interpreted as that over a blunt-nosed
flat plate (e=0) or blunt-nosed circular eylinder
(e=1). (As in refs. 9 and 10, the m=2/(c-+3)
case is referred to as the “constant-cnergy case.”)
The present report is primarily concerned with
values of m in the range 2/(6+3) <m <1.0 These
flows violate the hypersonic-slender-body assump-
tion 82<Z <1 at ¥ =0 (except for m=1) so that the
resulting solutions are not expected to be valid in
this region.

For the remainder of this report T. is taken to
be the streamwise length of a given hody and 6 is
defined 1o be

b=Ry(L)/L (5)

Then, the nondimensional zero-order shock shape

is given by
Ry=1" (6)

An alternate characteristic slope based on body
thickness at z=1Lis

'""(‘T’ @

These quantities are indieated in figure 1. For
problems where the body shape is initially speci-
fied, 8, is known immediately while 6 is found as a
consequence of the solution.

New independent variables are now introduced
according to the relations

(=r
8
n=r/Ry=rfa
so that
0_0_mn2d
dr dt ¢ Oy
9
0 m 9
or ¢ O

1 Values of m outside this range give rise to flow fieclds, portions of which are
physically realistic and consistent with the assumptions of hypersonie-
slender-hody theory., These flows are disenssed in the section entitled
GENERAL CTTARACTERISTICS OF FLOW FIELDS ASSOCIATED
WITIT POWER LAW SHOCKS.
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»

At the zero-order shock location =1, and at the
body 7 is also constant and is denoted by 7,.
Note also, 8,=89,. Following references 5, 6,
and 10, a small perturbation parameter e is intro-
duced:

—(El—m] 2

e=(&-"/As) 10)

de/dr=2(1—m)e/t

The boundary conditions at the shock suggest the
following forms for the dependent variables:

r=m&" " eyt ep1) (11a)
p=mAgE (Fy o) (11b)
p=vo+ ey (11¢)
R=t"(11ea,) (11d)

where ¢, I, and ¢ are functions of 5 only and «,
is a constant which is initially unknown.

An alternate shock shape parameter § can be
defined according to the relation

p= i () (12)

The range 2/(¢+3)<m <1 then corresponds to
the range 1 >8>0, Note, =1 corresponds to the
constant-energy case.

Substituting these quantities into the equations
of motion and collecting terms of order ¢ and €
then define the zero-order and first-order approxi-
mations, respectively, for the hypersonic flow over
a power law body. The choice of the variables is
such that the zero-order and first-order equations
arc functions of 9 only. These results, which were
previously obtained in reference 10, are summa-
rized as follows.

Zero-order approximation.--
Continuity:

Equations (3) yield:

(o miburite 20 (130)
n-- Momentum:
(o n)¢o+F, —2'”)5%:0 (13b)
Energy:
=) (-1 %) —G+np=0 (139

where primes indicate differentiation with respect

to 7. The boundary conditions at 9=1 arc

(1) =Fo(1)=2/(v+1)
(D =H+1/(v—1)

Equations (13) and (14) define the flow ficld com-
pletely.  The body location is defined by the
tangency condition (eq. (4a)), which becomes
(since r,=1,00)

(14)

eolms) = (13)

Derivatives of the dependent variables, at g=1,
are given in appendix B (for later use),

First-order approximation.—IEquations (3) yield,
respectively,

o1+ (wo—m) "//é‘*‘(i—i’f‘g) 1

H 08— @0 2] %~0 o
(¢o-n)¢1+£]+< ngﬂ B) @
Fi
1
nds (16b)
tolet (oo (4D ) ety (a2 ) Tieo
(16¢)
The boundary conditions at n=1 (sece appendix
C) are
a(l) [ —2 a1 \?
1—%(1)*[ —1 (1+ 2 B)]
— {7 d—32 1608 ta
=b15—b14(11 (178‘)
wl) [ —2 o+1 \?
gL (e 8) ]
I %o |a
=by;— by (17]))
RO _[—0-D g+1
R (T 8)]
—{”‘1«00) 21+(a+1)3}
=by;—baay (1 70)
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The tangency condition at the body has already
been satisfied (eq. (15)) so that the boundary
condition on ¢; at the body surface is

e1(n6) =0 (18)

For a given body, a, must be determined such
that equations (16) and (17) yicld a solution
satisfyving equation (18). To avoid trial-and-error
choiees for a; in a numerical integration of equa-
tions (16) and (17), it is advisable to decompose
the dependent variables and boundary conditions
into two parts, one independent of @, and the
other proportional to a;.  That is, each dependent
variable is expressed as

( n=(C i+ o (19)

TFor example, oy=g¢; 1+ ¢ 20, and so forth. The
solution for ( )iy and ( )i» can be obtained
independent of a;, and the final solution is given
by equation (19) with ¢, found from

a,= '—<P1,1(77b>/s01,2(7711)

Such a procedure was used in references 6 and 10
and is permitted because of the linearity of
equations (16) and (17). This procedure was
also used herein 1o get additional numerieal
integrations of equations (16) and (17). When
getting approximate analytical solutions of these
equations, it is possible to satisfy equation (18)
without resorting to equation (19).
EXPRESSIONS FOR SURFACE PRESSURE, SHOCK SHAPE, AND
DRAG

Before continuing with the solution of the zero-
order and first-order problems, it is useful to
develop expressions for surface pressure, shock
shape, and drag for these flows.

Within the framework of hypersonie-slender-
body theory, the local pressure coefficient is given
by (from eqs. (1))

[7’ 7(7\[5) ] (20)

The loeal surface pressure coefficient for the zero-
and first-order problems is then given by cither of
the following cxpressions (from eqs. (11h) and

(20)):

Op,b =2Fo(’7h) {1 .F‘(T’L)
(d7y/dx)? % F(l (m)

1 ( 2(1—m) 91
'ym2F0 770:] “[60)2 > (21a)

or

F (ﬂh)
=2F,(n,
(dl’o/d'r)2 ’ (”){ Fo(mo)

2(1—m)
y
T ymiF,( nz,):l AMs)* <L> } e1h)

The equivalence of cquations (21a) and (211) can
be seen by noting To=ml, Equation (21b) is
pmtimllmly useful for the =1 (constant energy)
case sinee 7p=n,=0 therein.

The zero-order and first-order shock shapes are
given by (from eq. (11d))

7—1)(?)471 ) "71: ( a- m)] 29
7@ M [1* ' (M3, L) (220)
ﬁ(?}_ o 7] z>2(1-m)
ﬁuG)—lJr “1@[5)2 <L

Again, equation ( 2h) is pmliculmly useful for
the B==1 case, as is discussed later in this seetion.

or

(22b)

Numerical values of the quantities 7y, Fy(ny),
F.(ny), and a,, which appear in equations (21) and
(22), are tabulated in tables T to IV for various
values of ¢, v, and 8.

The forcbody drag can be found hy integrating
the surface pressures. If D(7) is the forebody drag
up to station T and g=p,%%/2, then the appropri-
ate integral is

) T, (D
D((]_-')Z oo f YO, e dT, (23)
q 0

Noting 7o=0,L&", substituting cquation (21a) into
equation (23), and integrating yicld for

m>2/(o+3)
,D(—‘;l_ _2F(n, { nf"'(””)_z
28y (L6,) " m U m(o+3)—2
gt MRy 1 7 2} 24)
m(o+1) LFo(n) ym? o (7o) 1 M)’

The over-all forebody drag coeflicient, referenced
to the cross-sectional arca of the base, is then

D) _ 27 m 8y Fy(ny)
o-emegru LT Im(o+3) =217

moc+3)—2
me+1)

1

D=

Fi(w) 1 7T m ox
+ I'(ﬂn) ’szFu(nh) (“[50)2} @5
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TABLE IL.—APPROXIMATE SOLUTION OF ZERO-ORDER PROBLEM FOR ¢=0 AN
RESULTS OF NUMERICAL INTEGRATION OF EQUATION

D COMPARISON WITH

S OF AOTION

Approximate solution Numerieal
integration
Y B

Co Dy 78 Fo(ny) b Fy(n1)
1.15 0 0 1. 2535 0. 930 0. 930 0. 930 0. 930
13 2. 93 1. 535 . 891 . 766 . 801 . 761
1 5. 18 1. 800 . 852 . 672 . 852 . 675
5% 7. 16 2.13 . 801 . 598 . 803 . 611
5 8. 52 2. 68 710 - 520 716 C 546
7% 6. 16 3. 80 . 513 . 442 . 535 . 481
1 . 465 7. 67 0 . 412 0 .A15
1.4 0 0 1. 556 0. 833 0. 833 0. 833 0. 833
35 . 062 1. 678 . 760 . 679 759 . 666
14 1. 240 1.779 . 695 584 . 695 . 581
% 1. 296 1. 888 . 619 . 504 . 623 . 518
3 1. 167 2. 04 . 499 415 . 513 . 454
5 . 817 2.30 . 284 . 320 . 333 . 390
1 417 3.50 0 316 0 . 325
1. 67 0 0 1. 788 0. 749 0. 749 0. 749 0. 749
14 . 535 1. 788 660 . 605 . 658 . B87
13 . 644 1. 770 . 586 512 . 585 . 507
54 . 655 1. 762 . 505 432 . 509 . 146
34 . 608 1. 752 . 385 . 340 . 404 . 386
% . 504 1.738 . 186 239 . 248 . 326
1 . 3875 2.49 0 250 0 . 264

TABLE II.—APPROXIMATE SOLUTION OF ZERO-ORDER PROBLEM FOR o—1 AN

D COMPARISON WITH

RESULTS OF NUMERICAL INTEGRATIONS OF REFERENCT, 10

Approximate solution Numerical integra-
tion (ref. 10)
¥ B
Co Dy b Fuo(m) 75 Folns)
1. 15 0 —2.53 2. 05 0. 965 0. 947 0. 965 0. 948
14 -+1. 636 1.317 . 945 L7 . 945 .775
14 3. 64 1. 642 . 924 . 682 . 024 . 688
5% 5.53 1. 981 . 897 . 608 . 898 = 621
34 7. 11 2.53 . 846 531 . 845 . 553
s 5. 68 3. 62 . 724 453 8 735 » 484
1 . 465 7. 13 0 410 0 .41l
1.4 0 —1.019 2. 11 0. 915 0. 872 0.915 0. 875
13 4. 383 1. 228 . 875 L 704 . 875 . 696
4 L 757 1. 485 839 . 611 . 839 . 607
54 . 930 1. 631 795 529 & 796 4. 538
I . 949 1. 798 719 . 438 . 725 . 467
% . 757 2. 03 561 . 337 8 589 = 302
1 . 417 2.92 0 . 302 0 . 311
1. 67 0 —0.625 2. 16 0. 870 0. 805 0. 870 0. 811
% +. 170 1. 161 . 819 . 645 . 819 . 634
1y . 365 1. 405 . 776 . B54 . 776 . 544
% 452 1. 450 . 726 . 469 = 727 v 474
3 . 483 1. 457 . 644 . 370 . 652 . 403
% . 459 1436 | . 480 . 257 = 518 s 326
1 . 375 1. 867 0 . 255 0 . 241

* Numerical integrations for 8= 5%, 74 were not given in ref. 10 and were found as part of the present study.
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TABLE III.—APPROXIMATE SOLUTION OF FIRST-ORDER PROBLEM FOR o=0 AND COMPARISON
WITH RESULTS OF NUMERICAL INTEGRATION

Approximate solution Numerieal
integration
Y B
Ay By o a; Fl("/b) ay F, (ﬂb)
1. 15 0 1. 935 0 —13.33 1. 000 1. 800 1. 000 1. 800
% 4. 47 —. 0516 —-27. 6 1. 342 2. 78 1. 34 2. 79
% 6. 91 +. 0550 —35. 4 1. 453 3. 03 1. 43 3. 16
% 9. 20 . 226 —41. 8 1. 474 2.95 | _.__. | _-.___
3 11. 76 . 385 —48.3 1. 415 2. 57 1. 31 2.77
% 15. 11 —. 0457 —54.3 1. 194 1.999 | _____ | __.__
1 14. 82 +6. 85 —60. 3 . 963 . 923 1. 03 . 910
1.4 0 1. 857 0 —5.00 1. 000 1. 548 1. 000 1. 548
14 3. 06 —. 1035 —11.28 1. 213 2.18 1. 21 2.17
1 4. 24 —. 1135 —14. 15 1. 230 2,22 1. 21 2.25
% 5 14 —. 1110 —16. 18 1. 192 200 | _____ | __-.__
34 5. 98 —. 1430 —18 21 1. 113 1. 764 1. 07 1.78
% 6. 82 —. 386 —20.0 . 975 1.397 } - ___ | -o._._
1 6. 01 2. 94 —-22.7 . 992 . 781 . 965 . 799
1. 67 0 1. 799 0 —2.99 1. 000 1. 348 1. 000 1. 348
4 2. 27 —. 1000 —6.99 1. 140 1. 778 1. 14 1. 77
4 2. 95 —. 1237 —8. 55 1. 130 1. 750 1. 11 1.78
% 3. 43 —. 1323 —9.70 1. 092 .599 | _.__ | ____._.
2 3. 85 —. 1644 —10. 83 1. 035 1. 367 . 991 1. 39
% 4. 22 —. 309 —11. 90 . 956 1.092 v _____ | _.._.
1 3. 96 +4-1. 813 —13.22 . 940 . 700 . 930 . 707

TABLE IV.—~APPROXIMATE SOLUTION OF FIRST-ORDER PROBLEM FOR +=1 AND COMPARISON
WITH RESULTS OF NUMERICAL INTEGRATION

Numerieal integration
Approximate solution
v B Present results Ref. 10

Ay IR o a; Fy(ns) a; F(ns) a; Fi(m)
1. 15 0 1. 163 | 0. 00819 —13. 16 0. 489 1. 10 0. 489 1. 10 0. 455 1. 10
14 4. 03 . 229 -34. 1 . 883 2. 55 . 885 2. 50 829 2. 43
14 7.33 . 696 —48. 7 1. 083 3. 28 1. 08 3.37 982 3.05

3% 10. 78 1. 545 —61.7 1. 204 3. 52 1. 17 3.8 | _.._. -
34 14. 53 3.25 —76. 4 1. 288 3.21 1. 18 3.79 1. 15 3. 53
7% 17. 00 6. 61 —93. 2 1. 377 2. 26 1. 10 293 | __.__ ————
1 17.25 3. 50 -77.5 1. 449 1. 064 1. 23 1. 32 1. 07 1,35
1.4 0 1. 027 | 0. 00909 —4. 83 0. 477 0. 899 0. 476 0.918 0. 396 0. 92
% 2. 74 . 1231 —13. 39 802 2.03 . 807 1. 97 . 677 1. 93
1 4. 57 . 315 —18. 83 931 2. 50 . 932 2. 49 . 793 2. 38
5% 6. 21 . 676 —23.4 . 991 2.59 . 976 2.67 | --.__. e
% 7.77 1. 391 —28.5 1. 027 2. 36 . 976 2.51 . 870 2.36
% 8.73 2. 81 —34. 2 1. 075 1. 796 . 964 .95 | _.___ ————
1 7. 67 1. 372 —28.3 1,231 . 954 992 1. 14 . 937 1. 07
1. 67 0 0.968 | 0.01858 —2.84 0. 467 0. 785 0. 465 0. 783 0. 350 0.78
14 1. 996 . 0966 -8 11 . 754 1. 692 . 762 1. 63 YA 1. 61
15 3. 19 . 225 —11.26 . 856 2.03 . 863 2. 00 663 1. 93
% 1. 21 . 472 —13. 87 . 903 2. 09 . 900 2.1 | .. ———-
% 5.18 . 952 —16. 69 . 933 1. 919 . 911 1. 98 . 732 176
% 5. 83 1. 906 —19. 85 L 974 1. 606 . 922 57 | .. ——
1 5. 10 1. 056 —17. 16 1. 118 . 823 . 969 . 931 . 826 .90

For v=1.405, 8=0, ¢=1, the results of ref. 2 indicate a,=0.47 and Fi () =0.91 (found from cone results for Méy= o, 3.988 therein).



8 TECHNICAL REPORT R—15—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For the constant-energy case, f=1 or m=
2/(¢+3), the integration of equation (23) is invalid.
However, the drag for the latter case can be ex-
pressed in terms of a momentum contour integra-
tion. A momentum contour integration indicates
that the forebody drag up to any station T equals
the net energy perturbation of the transverse flow
(per unit ) at that station (e.g., ref. 10). The
energy perturbation is taken to be the d(-pmturo
from the free-stream value. Thus, if E is the
energy perturbation per unit mass at any point,

T (T T oya e 1 (PP, T
then
D@ =2r f ’:f‘) oFr dF @7)
where
JE— 2 _ § -1
= 0ty { g (g i)

+@~}6}5|:F it 7y (Gt M)]}

Noting 7=8L¢™, d7=8Lt" dn and integrating be-
tween the limits 9, to 1+ea; yield

D
47" m? q((;'l))a+x52_EM(a+3) 2f ( -0 ‘|" 900#0 )"7 d’?

Em(a-H) { 4a, 1
(7—1) 1) (Ma): \v+1 ym?(e+1)

[ () ] b eo

1
wherein use was made of the relation 2f Yo’ dn=
Ty

1/(e-+1). Equation (29) is applicable for all m
and is thus more general than equation (24).
Consider the zero-order drag approximation
(first term on right side of eq. (29)). Tt is seen
that the dependence on ¢ disappears for m=
2/(¢+3) so that the drag D(r) and, therefore, the
transverse encrgy jump discontinuously at r=0
and are constant for 7>>0; hence, the origin of the
term constant-energy case for this value of m,
Tf the first-order approximation is to be included,
equation (29) shows that in order to have a con-

2 By employing the zero-order stream function (see next scetion), do=
1

8o/(o+1)m°, sO t.hatfﬂ Yon? dn=[1—80(ns)]/(c+1). For body shapes de-
b

fined by 6u(ns) =0, the integral becomes 1/(e+1).

stant-cnergy flow the value of @; must be such as to
make the coefficient of £tV identically zero
in equation (29). Such constant-energy flows
can be used to cstimate the shock shape and
pressure distribution on blunt-nosed flat plates or
circular cylinders (see following sketches). The
correspondence between these two flows (sketches
(a) and (b)) breaks down at T=0 because of the
finite thickness of the plate or cylinder. How-
ever, hypersonic-slender-body theory (which is
the starting point of the present analysis) is
inapplicable near =0 anyhow. These two flows
are expected to be in essential agreement in the
intermediate regime wherein the values of 7 are
neither too small nor too large to invalidate
hypersonic-slender-body theory.

Drag impulse at *=0.

(a) Constant-energy flow.

T

=13, = const.

% I

(b) Flow over blunt-nosed plate or circular cylinder. Drag

impulse at Z=0.

Tf the nose drag (i.e., drag impulse at 7=0) is
known in a constant-energy problem, it is possible
to express the shock shapeand pressure distribution
as a function of this known nose drag. The
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procedure is as follows. For a constant-energy
flow, equation (29) becomes

Dy
aremq|R,@]""

R@/
= [ (GEyg et war=1 @0

where Dy is the known nose drag and the substitu-
tions L—=7 and 8=R,(Z)/7 have been made (since

the equation is independent of the choice for L).
Let Cp, be the nose drag coefficient:

D,
21 T q(_ )a—*—l

where Ty is the half thickness or radius of the flat
plate or circular eylinder, respectively.  The shock
shape can then be expressed as (from eq. (22b))

1 Z 7y
vl i :(']} (320)

where (from the ratio of eqs. (30) and (31))

ot e

Equations (32) give the shock shape R@[fyesa
function of Z/Fy with Cp,,. I, and @, as parameters.
For a given nose configuration, CDN can be esti-
mated by using methods deseribed in reference 11
and in the references noted therein.  Numerical
values of I (defined by eq. (30)), obtained from
an integration of the zero-order equations, are
listed in table V(a) for various v and o. These
are in good agreement with values reported in

Cp, @B1)

]?(ar) ]{0 (x)

TN TN

reference 5 (table V(b)). The results are expressed
as (041)(y*—1)I since this is a slowly varying
function of v and ¢. Values of a; are listed in
tables ITT and IV for ¢=0,1 and y=1.15, 1.4, and
1.67.

The corresponding expression for surface pres-
sure coeflicient for the constant-energy case is
(from eq. (21Db))

o F,0)
ARgar °(°){1+ A0

el BT

where ,(Z) /7y is given by equation (32h).

FORMULATION OF ZERO-ORDER PROBLEM IN TERMS OF
STREAM FUNCTION

The zero-order and first-order problems could
have been formulated in terms of a single depend-
ent variable, the stream function, instead of the
three dependent variables p, p, and 2. Such a
formulation is convenient for obtaining asymp-
totic solutions for the flow in the vicinity of the
body. These asymptotic solutions are useful when
numerically integrating the equations of motion
and when approximate analytical solutions are de-
veloped. Tence, the zero-order problem is formu-
lated in terms of a stream function herein, and
asymptotic solutions are obtained for # near n,.

The continuity equation (3a) is satisfied by a
stream function ¥ defined such that

- S 7

re or b@/br

The energy equation (eq. (3¢)) shows that p/p7 is
constant along a streamline (except for the dis-

1 0
TABLE V.—LVALUATION OT IE_[ (;FL]_*_% wﬁyl/o)n’ dn AND COMPARISON WITH REFERENCE 5
0 =

(vI=

(J0) 1o 5

[Tabulation is in terms of (¢+1)(v?2—1)1.]

(a) Present results, based on numerical integration of
zero-order equations

(e+1)(v*—-1)1
Y
=0 e=1
1. 15 1. 088 1. 098
1.4 1. 164 1. 203
1. 67 1. 206 1. 278

(b) Values based on Table TIT of reference 5

e+ —-DI
Y
=0 =1 =2
(Taylor)
1.2 1. 109 1. 134 1,134
1.3 1. 140 1. 170 1. 202
1.4 1. 163 1. 203 1. 226
1. 667 1. 213 1. 249 1. 293
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continuity at the shock). By considering flow downstream of the shock, a function « (of §) can
be defined according to the relation w(w?z) =p/p7 so that
p=wp” (35)
For prescribed shock shapes, the functional dependence of w on ¥ can be determined explicitly by
considering conditions at the shock. Substitution of the previous equations into the momentum equa-
tion reduces the problem to that of determining the single dependent variable .
In the present section, only the zero-order problem is considered. An appropriate form for ¢, is

b=/ e+ 1)lg"* 4, (36)
where 6,=0,(n) and 6,(1)=1. At 9=1, the boundary conditions on p, and p, give

2 —1Y
oyt () e (372)
But, also at n=1,
a gm(rl-l)
Wo=m (37b)

Eliminating ¢ between equations (37a) and (37b) and substituting for Yo according to equation (36)
show that ,
_2m? (y—1 mi+1g 18
=t (1) leeoal (39)
Therefore, py, 7o, and p, can be expressed as functions of £ and 6, (from eqs. (34), (35), (36), and (38)).
Substitution into the momentum equation (eq. (3b)) yields

1 Y+1 ] v 1+a(77!)01+ﬂ 1 )
B o6, (vED ™ (o+1)7 S0 (vt B)”]

0,8, v m 6 2y(v—1)" (0)7 2 76, 39)
(9('))2_ 1_(’Y+1)7+1(0'+1)7 77[+0(71)5(1)+B _("fl,)ﬂo]
2v(y—1)" (60)” 165
with the boundary conditions As 6y->0(n,) =0 (i.e., n—n,), the last term in
0,(1) =1 the numerator and denominator of the right side
of equation (39) can be neglected (at least for
06(1):(lt1)(‘;+1) 8<1).® Equation (39) can then be written
Y 0 _B ﬂ;_fzo (41)
On the body, 8(n,)=0. 8, v, =7
The dependent variables of the previous section  Integrating gives
are related to 6, by the relations 8y = Ky (g7 — g t1y110=p (42)
B where Kj is a constant. Substitution of equation
po=1—(0+1) o (400) (42) into equation (39) verifies the neglect of the
, last terms in the numerator and denominator for
%:._1_ bn (40b) 7 near g,.  An improved asymptotic solution can
o+l be obtained by substituting equation (42) into
2 1 1 y—18\" these terms. This gives for <1 and g=1I,
F,= - = {(40¢) votivole (ranall: _ .
y+1 8 (a—H Y1 ,’u> respectively (recalling #,=0 for g=1),
Ao, 0_86_o [ (ot DpE*
l—(p(’) 06 0(,)1 01; Y0 1 Z(T—B) FO(nb)
ﬂ“%zﬁ—u_é{)— (40d) X o (eI — g +1)8/ (1= B<1
vte
Yo_00 o _ [Kily(e+3)—2]\ 1 _
Yo 6 7 (40e) L B {27“(7—1) Fo f7 =1
I"(; 6(’)' 9(’) Yo 3 "l‘h(\ limit 8<1 is ussoclated with the o=1 ease (sce discussion in section
20 gt - (40f) entitled GENERAL CHARACTERISTICS OF FLOW FIELDS AS-

=Y
F, (VM b 7 SOCIATED WITH POWER LAW SITOCKS).
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Integrating the expression for <1 and then
substituting into equations (40a), (40b), and
(40c¢) give, for g1,

I-0o
o =~ Ky[n°t!1— "“7/(7-ﬂ>|:1 B’ K, (ot
o Bl i ™ tog—pFam 0

_ngﬂ)w(v—ﬁ)] (43&)

_ z_v—ﬂn"“—ni‘»“[ Bns~° ]
poT v 7 = 2(2y—B8)Fo(m)
(43b)
Ky et gt B8 [:1 ﬁ% ]
Voo —g b @B Falny
43c)

Bns~°
Fy=Foln) | 1 b0 (43d)
Terms of order 8 are neglected in the brackets
of the previous equations. Integrating the expres-
sion for =1 and then substituting into equations

(40a), (40b), and (40¢) give, for B=1,
2y+a—1
e +)y o1
(6+1) Koy (43¢)

¥=1
~ Ko Iy @y to— D Fo0)

U I T T ]
e R

I ug()]

(43g)

"/AO 3Y+U(’Y+l)
[ QT F0<0)

3y+oy—2
2y (2y+o—1)Fo(0)

Fy=Fo(0) [ 1+ 7=, | 43h)
Terms of order (n'=70,)? are neglected.  Note, from
equations (40c) and (42), that K, is related to
Fo(mo) by

1 v/ {y—8) 1 1/{y=8
K=(1EF L B |

For 8=0 the correction terms vanish in equa-
tions (43a) to (43d). A higher order approxima-
tion can be obtained, for 3=0, by writing equation
(39) as

—O'Ko

9'0’ g [ +1 +1
il 7’0 .qa T
0, n LyniFo(ny) ( (e

Integration then gives

o=~ Ko(n"t'—n3™") [1

g >y gl a1y 2 43i

(e TR i Folny 07 e s
na’+1__,,.,g+l 62
o= n° [ 3(a+1)'yﬁun»"Fo(m) 0]

437
eg] (43k)

og] (430)

These asymptotic solutions (eqs. (43)) are useful
in numerically integrating equation (39) (or egs.
(13)). The boundary conditions at n=1 permit
one to integrate from n=1 toward n=n,. How-
ever, equation (39) is singular at =, and the
numerical process breaks down. But, the asymp-
totic solutions can be used to carry the solution
to .. For example, if ¢ is eliminated between
equations (40a) and (43b), the resulting cquation
can be solved for 5,. The result, to the present
order, is

~ v(e+1) 90[ Bnt=0, ]}w«ﬂ)
" n{l y—B +2(‘)«, B F,

Similarly, equations (43d) and (43h) give

[v2
Vo~ Ko [1 T 20+ D)yKmicFoln)

Fo=Fo(n) I: O(U+I)Kon¢,“ro(ﬂb)

Terms of order 8¢ are neglected.

1—00
Fom) =F, (1-5 1) p<1
_ _ Bytey—2 7% _
’“F“[l Ty @y to—1) Fo] =1

The asymptotic solutions are also useful as guides
for setting up approximate analytical solutions of
the zero-order equations. This is done in the
next section.

APPROXIMATE ANALYTICAL SOLUTION FOR ZERO-ORDER
PROBLEM

An approximate analytical solution for the zero-
order problem can be obtained in the following
manner. Equations (43b), (43f), and (43)) sug-
gest that ¢, may be approximated by the expres-
sion
an=—(EE) L =Gt

—25THP]  (44a)
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where Cyand D, (as well as 9,) are as yet unknown
constants.  Differentiation ol equation (44a)
shows
— e+ [ B ZE ity ar— sy
, (44b)
W +o () TE oy,

+ I)Dn"la("laﬂ_ ﬂg“) Po—1

Substituling equations (44a) and (44b) into the
continuity equation {eq. (13a)) permits the latter
equation to be integrated. The result is

(44c¢)

Yo _DV_ no(] _ﬂg+lﬂl+("——2)n°
Yo(1)

B

(A—ngtn)r=#
N
( otl__ o+1yy—8 i}
NORR 1 0 T
Doyl
[l—pu(n”‘—nf‘) Y INCECEE
Similarly, integration of the energy equation (eq.
(13¢)) yields
v{Dot1)

Fo [ 1—ca—mgi™ 7 » "
]"0(01)[1_(*( ot g+1)Do] (46)

The constants C, Dy, and g, will be determined
so as to satisfy the boundary conditions on ¢,(1),
eo(1), and ¢ (1) as given by equations (14), (B1),
and (B4). The resulting solution for ¢, F,, and
¥y will have the correct values of these fune-
tions and their first and second derivatives at
7=1 and will satisfly the auxiliary condition
eo(me) =np.  In addition, the continuity and energy
equations arc identieally satisfied, but the momen-
tum equation is not (except at n=1).

Note that the expression for 6, associated with
equation (44a) is (from eq. (40a))

00=8J‘])[(0+1)f1;(—)(1_n—77] 47)

=61 =gzt

_r
(1—ng*) =+
v
atl__ 7’0+1) ¥=8

% {n

(48)
[1— Gyt 1—ng+) 2|58

Any form for g,—n which permits equation (47)
to be integrated in closed form will permit equa-
tions (13a) and (13¢) to be integrated in closed
form. Similarly, equations (45) and (46) could
have been deduced from equations (40b), (40¢),
and (48).

The constants C,, Dy, and n, will now be evalu-
ated. The cases <1 and B=1 are trcated
separately.

Case 3<C1.—Define the following known quan-
{ities:

r—1 v
D=rii-s (492)
1y [, 2 (@48
Qu=6+17_6 <P0(1)+7+1 ~ :I (49b)
1 20
o= | e =27 ] 99

where ¢o(1) and ¢4 (1) can be found from equations
(B1) and (B4). Equations (44), cvaluated at
n=1, become

Po=1—ni*— Cy(1—ngH) Pt (50a)
Q= (Dy+ 1) Co(1—ng 1) (50b)
So=1)y(Dy+1) Co(1—ng 1) 20! (50¢)
Solving for Dy, (), and 7, yields
P,S
DO 2 77QTO+QO_1>
G G AR T REV G
) Sy Y -
C=pi1(n, Q) (51b)
1@+
ﬂb*( Dl)Ql)) (51c)
The pressure distribution is found from
¥(Dyt1)
__2_. R, 1 2o 5
o=y (1= (1)
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The constants P, @y, and S, have the following

values when ¢=0,1. For ¢=0:
Pty (522)
Q=1 725 (52b)

Sy it g 9= 8]
For o=1:

P(]:%y%ﬁ (530)
Qo= ‘7 711 y— 6[’3 (977—(1)«&1) (53b)

8= 9(727_1)7 ﬁl: (137—11)8
+2(97;i‘{ﬁ6)6 (7—1)(({;:’-'—J]r)1207+1) (53¢)

Case B=1.—For g=1 1t is known that 7,=0 so
that an approximate solution is (from eqs. (50a)
and (50bh))

1,=0 Co=1-"P, Do=(Qu/Co)—1 (54)
This solution does not satisfy the boundary con-
dition on ¢'(1). It gives more accurate results
than do equations (49) to (51) evaluated for
g=1.

Equations (54) correspond to the approximate
analytical solutions of the zero-order blast-wave
problem which are presented in references 3, 4,
and 5. Equations (44) to (563) may be vicwed
as a generalization of the latter for g<{1. An
exact closed-form solution for the =1 case is
presented in reference 10 (for ¢=0,1,2) and in
reference 12 (for 6=2).

Numecrical results for ¢=0,1 and various values
of 8 and v are listed in tables T and IT.

APPROXIMATE ANALYTICAL SOLUTION FOR FIRST-ORDER
PROBLEM

The quantities ¢,/(n—@0), 1/, and F,/F, will
be considered as the dependent variables (similar
toref. 6). By using equations (40), the first-order
equations (cqs. (16)) can then be written, re-
speetively :*

Continuity:
(72) () +a Goarey) o o
Momentum:
~e () E:i)'
00 f"%) 0 (55b)
Energy:

#1

1«]0

(55¢)

v (20 () @)L

First, equations (55a) and (55¢) will each be inte-
grated as far as possible.

Equations (55a2) and (55¢) can be written, re-
speetively:

2 e Y
(00 -3 L _01-\‘-,5 gu 7"1‘0—
(90 F),:__,Y_ - (OOYT_H L),
F, gy FHYE I ¢

Integration yields

‘ll’l_gﬁ [fﬁl‘, S (00 i—> dn+const.-|

F] 1 —tﬁ (41 ¢
ri= [ [ (0 75 dreeonst |

Integrating by parts and introducing the constants
E, and @, give the alternate expressions

¥ i I ¢ ; ~
hoo 1902 |7 n—_»‘% A0+ 88 (560)

Yo
dl

et G468 o

m— - d6,+ G608
(56b)

¢ The operation [y(1+8)—8] (eq. (55a)) —(1+8) {eq. (55¢)) leads to the
special inicgral

B -2t (vB+1—8)
n—=¢0

"—1—<1+ﬂ) i (const.)of

where the constant can be evaluated in terms of the boundary conditions at
=1,
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Substitution of equations (56) into equation (55b)
reduces the problem to the single dependent vari-
able ¢/(n—¢). This is essentially what is done
in appendix D to obtain the asymptotic form of
the first-order solution near 8,=0. Since ecqua-
tions (55) are equivalent to a linear third-order
equation, three independent asymptotic solutions
are obtained. When numerically integrating
equations (16) (by the superposition procedure
outlined in connection with eq. (19)), the asymp-
totic solutions are required in order to proceed to
7, from a point near #, (since the equations are
singular at »,).

An approximate solution of the first-order equa~
tions (eqs. (16) 1o (18)) will be obtained herein
by using the asymptotic solutions of appendix D
and cvaluating the arbitrary constants therein so
as to give consistent values for the dependent vari-
ables and their first derivatives at =1. The
asymptotic solutions which do not satisfy ¢,(3,)
=0 are neglected (in order to satisfy eq. (18)). The
resulting solution will exaetly satisfy the continuity
and energy equations but does not satisfy the mo-
mentum equation except at g=1 and p=m,. The
cases 0<{B<1, B=0, and 8=1 are treated sepa-
rately. In each case the problem is reduced to
& form requiring the simultancous solution of four
linecar algebraic equations in four unknowns.

Case O0<p<l.—Let L, ;=—p34, M =
B(1—PRgd,, Ei =), and M, ;=L in appendix
D. Equations (D4a) plus (D4b) can then be
written

__%’;)24-11[—3—{—6(1—6)990]—}—01f00(1,+ﬁ+(2—5)]3103

%ZAI[('Y—B)+I3(2‘Y—B)_(/90]
+CMEY+Y8-B)6 5+ (37— B) B (57)
where
— —1 j"[]';_ﬁ—(’y_ﬁfl)n}’—w
1516 1.~ 2@ k)
p=Ps Bny~7

TE; 20+8CYHBY—B)Fo(m)

The term involving B,62 was added to equation
(57a) so as to permit satisfying an additional
boundary condition at n=1. The corresponding
terms in equations (57b) and (57¢) were found
from equations (56) with K,=G,=0. Four un-
determined constants, A, By, (", and a,, remain.
These are evaluated so as to give consistent values
for the dependent variables and their first deriva-
tives at 9=1.

At n=1, 6(1)=1 and equations (57) give
(recalling egs. (17) and (B5))

bis—bua=[—p8+8(01 #6)9]4‘11'{‘ 2—p)B,+h(y

(58a)
bas— b2, = (14289) A+ 3B, + 1+ (2+B)R]C,
(58b)
bss—bssa,=[(v—B) + (2y—B) Byl 4:
+@Bv—B8)Bi+ 2y+v8—B)h(Cy  (58¢)

7 bys—buar=B(1—B)g A, +2(2—B8) Bi+ (1+B)A()
(57a) (58d)
Define the coefficients of A,, By, and C} by
by =8[(1—B)g—1] bi=2—8 bu=h
by =1-+28g by=3 bu=1+(2+8)h
bu=(y—B)+ (2y—B)By bu=3v—8 by = (2v+v8—B)h
bu=8(1—8)g by=2(2—3) b= (1+pB)h
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Equations (58a) to (58d) can then be written,
respectively:

b1+ b8 +b,;3C 4+ b1,a,=by5
borA;+boe B+ 023 Cy 4 boyay = bys
b1+ 03B+ b3 40540, = by;
b+ 0B+ byC byt =by;

(59)

which are four simultancous equations for the four
unknowns A;, B, (}, and ¢,. A knowledge of these
four quantities, together with equations (57), com-
pletely defines the first-order flow field. Numeri-
cal results for ¢=0,1 and various values of 8 and
~ are listed in tables TIT and IV.

M,

Case 6 0.—Let E] 1——C17 (yl 2—[11, and g= I
1,1

M,

GI .2
(D5b) become

in appendix D. Equations (D5a) and

= Chgt— Ayt + Bi6g

n—

i (1

B\ _3v it 4, (1—ﬁ qoo>+4“’ Bt
)

3 3 4
+3 08 )5 Atity Bt 60

where

_ —a(y—1)27
I =3y e+ Dnz (v 1) Fy(m) ] 7707

The terms involving B,6] were added so as to
permit satisfying an additional boundary condition
at n=1. At n=1, equations (60) give (using
eqgs. (17) and (B5))

bis—bia,=—ygA,+ B +4gC, h

3 4 3
bys—baa,= 5 9A1+§ B+ (1 +§ g>('l
(61)

v

3 4 3
b35_b34a1:<1 '—77 g)AI +; Bl+*2;y 9O

bes—baa,=—294,+3B,+2¢C, J

Define the coeflicients of A,, By, and (', by

503891—59—-3

u=-—4 bp=1 biu=g A
3 3
b21=—§g b22=§ 623=1+§g
(62)
4 3
631:1—_!] 632=§ ba:i:?.yg
b41=_2y b42:3 b43—'_—'2g J

When these quantities are used in equations (59),
the unknowns A;, B;, (1, and a, can be found, thus
defining the first-order flow.

For ¢=0, it can be shown that A4,=(3y+1)/2y,
B,=0, Ci=—2/(v—1), and a,=1. Also, Fi(m)=
(B3v+1)/[y(y+1)]. These results are in exact
agreement with those from an expansion (in terms
of 1/(M8)?) of the oblique-shock relations for flow
over a wedge.

Numerical results are tabulated in tables TII
and IV,

Case fB=1.—let L,,=—A, E.=C, g=
—M, y/L, ;,and h=2M, ,/E, ;in appendix D, Equa-
tions (D6a) and (D6b) then suggest

|
77__*’1_%=A,[—1+(P—l)ge§]+aho§+1+1},o§+2
%:Aluﬂl—al(ml)ge’al
(V]
+ O, (1+P+2be">+;frf3 g b
A=A =D+ P+~ 11g8%)
(’YP+2’Y DA oy ppgy Y0371 B,6°+2
L O Pl 1% J
63)
where 9yt 1
_2vto—l
P= v(o+1)
1
Ko_(”“) s F0<0>]
(y-N(e-1
Yo+ 1D

_(472—137-—07—1—8)[(
2v* (e + D) P[y (P 1) —1] F,(0)

(y-1(e-1)
yle+ 1)

By+ovy—2)PK,
v (o+1)(P+1) (v P+2y—1)F(0)

kz
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The terms involving B,6P+? were inserted to permit satisfying an additional boundary condition.
The solution then proceeds as in the previous cases and results in four simultancous equations for
the four unknowns A, B, (), and a,. Equations (59) apply with the coefficients of 4,, By, and

¢, being given by
by=(FP—1g—1
bu=1+[1—0|(P+1)g
by=7—1+[(P41)—1lg
by=(P—1)Pg
biz=1

b= (P+3)/(P+1)
633:(71)'}‘3"/_1)/(13’{“1)

b43:P+2

Equations (59) can be solved for A, By, ¢y, and
a,. Numerical results are given in tables III
and IV,

NUMERICAL RESULTS AND DISCUSSION

The zero-order and first-order problems were
solved both by numerical integrations of the
cquations of motion and by the approximate
method. The results are tabulated in tables T
to IV for ¢=0,1 and various values of 8 and .
The results of the numerical integrations of refer-
ence 10 are included in tables IT and IV. The
quantities Fy(m), Fi(n,), 7, and a; are used in
equations (21), (22), (32), and (33) to find pressure
distributions and shock shapes for the class of
bodies considered in the present report.

With regard to the zero-order problem, tables I
and IT show that the approximate method is in
good agreement with the numerical integrations
for 8 ncar zero. As B approaches one, the ap-
proximate method becomes less accurate. At
B=1, however, the approximate solution is again
accurate sinee the appropriate value 2,=0 is auto-
matically imposed and there are only two free
constants, as opposed to the three free con-
stants in the 871 cases. In general, the approxi-
mate method is accurate when the shock is rela-
tively close to the body (.e., 7, is near one)
so that, for a given 8, the approximate solution
is most accurate for values of v near one. The

bw:h h
boa=1+[(P+2)k/P]
bau=[(vP+2y—DA|/P

bﬂ: (P+ l)h
L (64)

J

estimates for n, tend to be more accurate than
those for Fy(s,). The wvariation with 5 of the
dependent variables is plotted in figure 2 for
o=1, y=1.4. TFigure 2 is based on the approxi-
mate zero-order results. Corresponding figures,
from an exact integration of the zero-order equa-
tions, are presented in reference 10.

The accuracy of the approximate solution of
the first-order equations can be deduced from
tables IIT and IV. Again, the approximate solu-
tion tends to be more accurate for 8 near zero and
for v near one. The accuracy of the first-order
approximate solution is less critical than that for
the zero-order flow sinee the former is a perturba-
tion quantity. Thus, if the first-order solution
represents a 10-percent correction to the zero-order
flow, and, if the approximate first-order solution
is 10 percent in error, the latter would represent
only a 1-percent error in the over-all flow.

The numerical integrations of the first-order
problem, which are reported in reference 10, ap-
pear to be in error, particularly with regard to a,
(sce table IV)., Note that for o=1, =0, y=14
the present approximate method and numerical
integrations both give a, ~0.48, whereas reference
10 gives a,~0.40. These can be compared with
the value a; =0.47 from the cone results of refer-
ence 2 (sce table IV), indicating better agreement
with the present results than with reference 10.
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Froure 2.— Results of approximate analytieal solution of zero-order problem for o=1, y=1.4, and various values of 8.
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GENERAL CHARACTERISTICS OF FLOW FIELDS
ASSOCIATED WITH POWER LAW SHOCKS

It was previously shown that, in the limit
1/(Ms)* »0, a shock shape of the form R,=2"
reduces the hypersonic-slender-body equations to
a set of ordinary differential equations with n=r/R,
as the independent variable. The alternate shock

shape parameter 8= [2 (%— 1)] ’,/; (¢+1) was also

introduced. Emphasis was placed on the range
0<8<1. In the present section, the general char-
acteristics of the zero-order flow fields associated
with different values of 8 (including 8<C0, >>1)
will be discussed.

With ¢=0, cquation (39) becomes

% VN [ M
6/6,_8' Tan—1)7 Gy (=)
B2 v I E R VAR (65)
7 2y(y—1)" (6) né,
8, (1) =1 (1) =(v+1)/(v—1)

Equation (65) is singular when 6,=0. The cor-
responding value of yis denoted by »,. It can then
be shown that for 8,-»0, 5—7,, equation (65) has
the following asymptotic forms:

v
00'*’]\70(77—770)7_'5

By
B= By~ Koe™' npp=—® (66)
y<B<Zy  Oo=Kof (=) mp=— oo

Asymp-
Also,

where A, and Iy are positive constants.
totic solutions were not found for g8>2y.
recall that 5,=0 for g=1.

1.0 — -

Curve
—1 g B<0O
gl b B-0
¢ 0<(B=3/4)<l
1 d B-=i
66— € I<(B:=12)<1.4 +
P f L4<B<28
0 ] ——— Numerical integrations A
41 of zero-order equations -
-——= Sch‘errrlq'ic 7"/ ]
. A/ [lo
.2 Y o e/d /b ]
_TIb:‘(Da,T_ —_’A,<V/ /‘j - S
M 5 8 5 e £ 1 T
-6 -4 -2 0 .2 .4 .6 .8 1.0
7

Figure 3.—Variation of §, with y for o=0, v=1.4, and
various values of 8.

4
X
(b)
r r
x YV~
{c) (d)
r r
s a—— N %%
(e) (f)
(a) p<0.
(b} 8:=0.
(e) 0B,
d) g=1.
(&) 1<B8<H.
() v<B<2y.

Ficrtre 4.—Schematic representation of flow fields for
=0 and various values of 8.

The formal solutions of equation (65), for con-
stant v, can now be represented in the 85,5 plane
for various values of 8. This is done in figure 3.
The corresponding physical flows are given in
figure 4. The value of 8 defines the shock shape.
The corresponding value of 5, defines the body
shape (since ry=9,R;). For 3, positive, the body
is in the first quadrant of the z,» plane (figs. 4(a)
to (c)), while, for 5, a finite negative number, the
body is in the fourth quadrant (fig. 4(e)). The
body and shock are similar in shape except for
7=0,—o. The drag associated with these
flows can be found from equation (29). For
B>>1 it is seen that the drag is infinite at x=0
and thus cannot correspond to a physical situation.

Except for the =0 case, cach flow ficld in
figure 4 is not everywhere consistent with the
original use of the hypersonic-slender-body equa-
tions. In particular, conditions at x=0 violate
the hypersonie-slender-body approximations for
all except the =0 case. However, in cach case,
there is a region in the vieinity of the shock
(excluding « »0) for which the flow field is con-
sistent with the approximations. If a streamline
in this region is taken to define a body shape (sce
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sketeh (e)), then the flow external to this stream-
line is accurately deseribed, at least initially, by
the solutions obtained in the body of the report.
Thus, even the 82>1 cases yield flows, portions of
which are physically realistic and consistent with
the hypersonic-slender-body approximations.
The streamlines downstream of the shock are
defined, parametrically (with 5 as parameter), by

1 1
¥ IVEFD g 1\ T
. --~(07,) n? (ez) ©7)

where (x,,7,) are the coordinates of a streamline at
its intersection with the shock. The ratios z/z,
and r/ry are thus functions only of 4 (for specified
o, v, and 8). Note that 8, and 5 are not constant
along streamlines which do not pass through the
origin. The downstream extent to which such
solutions are valid has not been resolved.

~xg,7s)

(¢) Flow when g>1.

A similar discussion can be made for the o=1
case. Considering equation (39), the asymptotic
form for 8, as 8,-+0, n—>1,, is, for <1,

Y

8y~ Ky (n2—n}) 7" F (68)

where 7,=0 for g=1. The asymptotic form
when 82>1 has not been determined. Since the
flow 1s axisymmetrie, 5 cannot be negative and the
integral curve is confined to the first quadrant of
the 6,7 plane. There 1s a singularity at =0.
If a streamline, other than 8,=0, is taken to define
a body, then the external flow corresponds to the

flow about an open-nosed body of revolution.
The leading-edge angle has a finite nonzero value
for such flows.

CONCLUDING REMARKS

An approximate analytical method has been pre-
sented for obtaining the zero-order and first-order
solutions for hypersonic flow over slender blunt-
nosed bodies following a power law variation.
Wedge, cone, and constant-cnergy flows are in-
cluded as special cases. The solutions are found
within the framework of hypersonic-slender-body
theory.

The approximate solutions are compared with
numerical integrations of the zero- and first-order
problems. The agreement is generally good, par-
ticularly for 8 near zero and 4 near one. The
shock is relatively close to the body for the latter
cases.  Sufficient numerical results have been
tabulated to permit estimates of the accuracy of
the approximate method for various combinations
of g and 4.

The general characteristics of flow fields asso-
ciated with power law shocks have also been dis-
cussed. It is pointed out that values of the shock
shape parameter 8 outside the range 0<8<1 also
give rise to flow ficlds, portions of which are
physically realistic and consistent with the
hypersonic-slender-body approximations.

The accuracy of the approximate solutions
could be improved by following more complex pro-
cedures. For example, the flow near the shock
can be expanded in a Taylor’s series about 9=1,
and the flow in the vieinity of the body can be
expressed in terms of the asymptotic solutions,
cach multiplied by an arbitrary constant. These
constanis can then be evaluated by matching the
Taylor’s series and the asymptotie expressions at
some point between the shock and body. The
Taylor’s series then represents the {flow between
the mateh point and the shock, while the asymp-
totic expressions represent the flow between the
body and the match point.

LEwis REsEARCH CENTER .
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLEVELAND, Ouro, November 17, 1058
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APPENDIX A
SYMBOLS

constants (eqs. (57), et seq.) v
constant {eqs. (11)) 5
constants (eqs. (17), (B5), (68), et

seq.) . 5,
drag cocflicient (cq. (25))
pressure cocflicient (eq. (20)) €
constants (eqs. (44)) n
specific heat at constant volume
forebody drag bo(n)
pressure similarity variable (eqs.

an) g
integral (eq. (30)) )
constant (cq. (42)) p

streamwise length of body

free-stream Mach number

shock shape power law exponent
(cq. (6))

constants (eqgs. (49))

pressure

dynamie pressure, p,u% /2 Subseripts:
lateral displacement of shock b
Iateral displacement of shock in 8
limit as 1/(3/6)2—0 0
body shape 1
temperature ©
\'clm'm.(\s in (r,7) direction, re- Superseripls:
speetively
streamwise and lateral coordinates, )
respeetively ()
alternate shock shape parameter,
T ()
2(——1)|
) e
APPENDIX B

900(77), 901("7)

' (’7); 11’1(’7)

TECHNICAL REPORT R—15—NATIONAL AERONATUTICS AND SPACE ADMINISTRATION

ratio of specific heats

characteristic slope, equals T2o(Z) /L
for flows with power law shocks

characteristic body slope, 7o(L)/ L

perturhation parameter, (£'-7/3/5)%

Iateral coordinate similarity varia-
ble, »/R, (egs. (8))

zero-order stream Tunction simi-
larity vartable (eq. (36))

z {eqs. (8))

densily

0,1,2, for planar, cylindrical, and
spherical flow, respeetively

lIateral velocity similarity variable
(eqs. (11))

density similarity variable (eqs.

(11))

quantity evaluated at body surface
quantity evaluated at shock
zero-order solution

first-order solution

undisturbed free-stream value

barred quantities are dimensional

unbarred quantities are nondimen-
sional (eqs. (1))

primes indicate differentiation with
respect to g

DERIVATIVES OF DEPENDENT VARIABLES AT 4 -1

The approximate analytic solutions require a
knowledge “of derivatives of the dependent vari-

ables at p=1.

These are summarized as follows.

From equations (13) and (14) it can be shown

that

eo(1)=

20

1

(RS [B&y+1)(c+DE—40y]  (BI)

Fi) == [ DO+ DE+Ds

W)=

_ b
(y—1)*

—20v(y—1)] (B2)

By+ 1D (e+118—20(y—1)] (B3)
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I _ 2 _3(')’—{_1)
ei=2{ -

Lon((3 e

Similarly, from equations (16) and (17),

e ( e o e

o e-n("5) s+ w b

_=20y=1) [T ET gy Y1 (v+D+HB, (1] el

) 7 (G2 q:) ECESVCENIE [’ﬁl“(” r—1 ¢ O o o 1=
1 Fl 1 1 -1 (1 o
+v ‘)i'ftpg )+ _1 13 EI; 72 7+ ()‘*'(7_!”(7)_(1)2 L 5051; =by—bua,  (BH)

APPENDIX C

BOUNDARY CONDITIONS AT n=1 FOR FIRST-ORDER PROBLEM

In the first-order problem; the shock is located
al R=¢(1-+ae) or, equivalently, at np=1+a,e
(see sketeh (). Tt is desired to specify houndary
conditions at n=1.

_em
R=E7(1+ g€) -
=1+ g

- ¢
(d) Shock shape.

Let @ be any quantity whose value is known at
the downstream side of the shock (designated by
subscript s).  Then, expanding in a Taylor’s series
aboul the shock at constant z yields

(Q>,,=1:(Q)ﬁ(%?)s(m—nw ..

:(Q)s’<aa—§>s((lle)-}— o (C1)

Consider @ to be the
(C1) becomes

vertical veloeity.  Iquation

-
Z),,:_I:zvs—(—av;>s(l]e (C2)

. R
But, from equation (4¢), v, ~—§ l (1 —# 0T

2
p— 2m gt |:1+6( —m, - >:| (©3)

v+1
. _ 2—m .
sinee dR/dr=mg 1| 14-¢ ( m )t Equation

(C2) then becomes, by letting r=mg™~! (oo +eer)

[ G )]

900(]) +eo 1) —*

—eo(l)aye
€
so that
2 1 2— 1o,
¢x(1):—+1‘ {_W"—al[ mﬂ = Wo(l):l}
(C5)

Expressions for Fy(1) and ¢, (1) are found similarly.
The results are given in equations (17).
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APPENDIX D

ASYMPTOTIC SOLUTIONS OF FIRST-ORDER EQUATIONS

Asymptotic solutions of the first-order equa-
tions, near 6, ~0, are found herein.

From equations (56), the continuity and energy
equations show

Pt o [0 040 g, 4 g}
‘/’0 n—¢o
(D1a)
Fl [ r_( @1 \
e —B)62 | 0518 P g, + G608
7, vn_%+(v+vﬂ f5)) ] 0 — b1+ G108
(D1l

Consider solutions of the form

B N (T M+ L)
L/

(D2a)

For N=8, N4+ P#=3, the corresponding values of
Y and F| are
NP1

’ 1
4/0’—00 (V# L, +7\TP7!3 Mof+ . >+rx0ﬂ
(D2b)

Fl_ N A\ +‘Y 6
’FTG”[ Nog b

YN+LP)+v—8 , .
+7 NAP—g Mo+ . |68 (D2¢)
The appropriate values of N and P can be found
by substituting equations (D2) into the momen-
tum ecquation (eq. (55b)) and considering 4, =0.
This will be doue for 0<{8<1, p=0, and =1,
respectively.
CASE 0<8<1

In the vicinity of 8, =0, the momentum equation

becomes

d(I/ I F 6,
Por S+ (i (3550)-
D3)
Substitution of equations (D2) into (D3) yields
the following three independent solutions:

For Ar:O) P=1, El,l:Gl,lf—Ol

-
&: JI,I+J{1,100+ L]
n—w¢o
ba Lus 20,
1—
]’4':0 g 62 > (D4a)
—F‘O—‘ 76514 7 k4 {f\[l N T
311,15(7‘6—1)(1—6)110”"
]41,1 2(27_B)F0(ﬂb) J
For N=p, P=1, (7, ;=0:
N
=0+ M )
%=05[E,2+<2+B)Ml,200+ o
F" F (D)
7 =000+ Cy+vB—B) M0t ]
J[1,2E Bny—°
Ey s 20048) Qy+Bv—B) Fo(ny) J
For N=—(r—p)/v, P=1, I} 3— G ;=0
_r-8 h
—@3—:90 Y (L1,3+A[1,390+' . )
N—¢o

Vs o~ —BLis | VB :l
wf”“ ! [wwﬁ TTvB—F Bl —v) Dbt !

[O+7‘[“00+ ]

B(1
MNE (D)}
Ly 2v(y+v8—8) Fy(ny) J

{(D4c)

For solutions satisfying ¢,(5,)=0 it is neccessary
to omit equations (D4c¢).
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CASE 8=0

The momentum equation can be written

00 dley/(n— <Po” ; ,(](E/Fo)
— (o +1) a6, +Fun a8,
HJFO )(n w) o %_%> 0
where

1/
o~ nrE,~ G+ () [7 R |

The following three independent solutions result:

For N=0, P=2, ;=0

~
_“’1_1:0+3[1‘103+
¢
3 .
‘%:Elvl—l'ﬁx}‘[l.]eﬁf ...
r ( (D5a)
=0+ M
ﬂl.,1= o(y—1)21/7
iy 3+ Dnie[(v+ 1) Fylyy)]2H0
For N=0, P=2, E, ,=0:
N
L, U gy
mT—¢
‘/’12» 3 . o
%*0"{‘2 311‘2004.— roe .
\
il 2__(71 z+ 1[1 094)
M, a(y—1)217 _ M.
Gry 3+ D[ D F @[O0 T E
(D5h)
For N=—1,P=2, G, ;=F, ;=0:
.
=0y (T st M5 63+
Vi a1 ‘ )
—=0; (0+2J[1.300+ .. )
‘p(]
i r
1—‘3—00 YO+27]M, 5634 .. L)
¢
J[1,3= a(y—1)2!7 - 3 M, i
Lig ~ 2Y(e+D)nd[(v+1) Fo(qn)] 707~ 2 F,

(Do()

23

When the boundary condition ¢,(n,)=0 Is Lo be

satisfied, equations (D5¢) are omitted.
CASE =1

b v—1 66

: yo+1
For this case, nxn,,:o,ﬂz el et
(v—1D—1) 2v+e¢-—-1

2v+o—1
771—,00%[(“77 v—1 x[(ﬂ y(o+1) 00 7(a+1)_

and

Reeall that

I(U:(ﬁ]-) AO)]

The momentum equation can he written

dle/(n—e)] d(F/Fy)
dé, de,

7+1

y—1 _
0 1
¥ 0

+ g

&1
1—¢o

r %)0

The following three independent solutions are
obtained:
For N=0, P=02v+e—1)/[y(c+1)]:

(1) 0=0,2 (i.c., P51):

(y—1)(ev—v+4)
27 e+ 1)

3’Y+’YU— 1_
Q’Y?(aJrI)

+

+

n“’_“ =L+ (P—1)M 60+ ...
%=—L1,1+ (])—%])1[1‘105«{— L
B o )Ly (P 1) =100, 054
0
(y=1(e—1)
My @r—137v—av+8) K, "
Lin 2¥e+1) Py (P+1)—1]F,(0)
(2) e=1 (e, P=1):
&:L1,1+0+ e
n—¢o
— L +H04- ...
ro —(y— 1) Ll 1+01 10+ .
Gli:972—77+4
Ly 2v2F(0)
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These ecan be put in the unified form, valid for
a=0,1,2:
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For N=1, P=Q2y+o—1)/[y(e+ 1], Gr.2=0

-
) P20, O+, B5+ . )

PLL Lo (P—1) M85+ .. =0
n—¢a p+2

¥ :—00 (E, A D2 e )

-#:A-— 11_1+il—0’[(p+1l)j\[1'10€+ “ e D b)

(D6
1" *‘('Y—])Ll (P41 s (D6a)
0 (‘Y He-1)
—1]M,.85+ ... M, By+ov—2)P(Ko) +@+D
(r=1) o=1) Frp 27 +1) P41 P2y =1 F0) |
=1 =1
J[1,1=(472—1.?')/—c)")f—H:S)I\’o v o+
L 2t DI =RO For Ne—(—1)y, P=(@y-+a—1/lr(o+1)]
El.sj 01,3T02

£re (Lot M08+ ..

n—¢o
—1
$rs_ _?T "Ly yP 41
W_BU 1“‘)’Y+'YP+]. ‘[1 ,360 ‘]‘— )
F (D6o)
’ e P
%& (0+ P i jjfl‘gef—{— . >
(y=Dle—1)

1[1 L3_ [(37—%07—‘))-%(97—’1)(77 1) (70;‘)/777')/ 4)+('y 1)] (,.rp+1__2,y)[' +(o+1)

LI 3 9‘Y (0+1) (‘77*1) “/P "YP*.‘I—’)’)I"U(U) J

When the boundary condition ¢,(n,)==0 is to be satisfied, equations (D6e) are omitted.
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